Demonstration by RNA interference of a new molecular mechanism for resistance to an oomycete in tobacco plants

نویسندگان

  • Ingrid Hernández
  • Orlando Borrás
  • Osmani Chacón
  • Merardo Pujol
  • Yunior López
  • Raisa Rodrígues
  • Roxana Portieles
چکیده

Oomycetes constitute an important agricultural pathogen for plants of the Solanaceae family. Black shank, caused by Phytophthora parasitica var. nicotianae, is one of the most important diseases affecting tobacco plantations in Cuba and worldwide, constituting an occasional cause of major economic losses. We have constructed a subtractive library with the aim of identifying tobacco genes involved in the resistance to this oomycete. The analysis by realtime PCR confirmed, for the first time, the patterns of differential expression between resistance and susceptibility reactions for the identified genes. This constitutes the first report demonstrating the pattern of expression of the glutathione-S-transferase (GST) gene in varieties and species independently of the degree of resistance or susceptibility to the pathogen. The gene was cloned in a plant transformation vector for gene silencing, and transgenic N. tabacum plants with silenced GST were obtained. They significantly displayed increased resistance to the disease, in highly susceptible plants, in comparison to control plants. This work constitutes the first report on the role of GST as a negative regulator of the defensive response to oomycetes, as well as the first instance where RNA interference technology has ever been used to obtain resistance to diseases produced by Oomycetes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of T-Phylloplanin gene knockdown and of Helianthus and Datura phylloplanins on Peronospora tabacina spore germination and disease potential.

T-phylloplanin proteins secreted to aerial surfaces of tobacco (Nicotiana tabacum) by short procumbent trichomes inhibit spore germination and blue mold disease caused by the oomycete pathogen Peronospora tabacina. Many other plants were found to contain water-washed leaf surface proteins (phylloplanins), but the functions and properties of these are not known. Here we extend earlier evidence f...

متن کامل

GmWRKY31 and GmHDL56 Enhances Resistance to Phytophthora sojae by Regulating Defense-Related Gene Expression in Soybean

Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.] caused by the oomycete Phytophthora sojae, is a destructive disease worldwide. The molecular mechanism of the soybean response to P. sojae is largely unclear. We report a novel WRKY transcription factor (TF) in soybean, GmWRKY31, in the host response to P. sojae. Overexpression and RNA interference analysis demonstrated that GmW...

متن کامل

Expression and antimicrobial activity analysis of dermaseptin B1 recombinant peptides in tobacco transgenic plants

Recently, new molecular breeding and genetic engineering approaches have emerged to overcome the limitations of conventional breeding methods in generating disease-resistance transgenic plants. The use of antimicrobial peptides (AMPs) to produce transgenic plants resistant to a wide range of plant pathogens has achieved great success. Among huge number of AMPs, Dermaseptin B1 (DrsB1), an antimi...

متن کامل

Bcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia

Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...

متن کامل

Enhanced Whitefly Resistance in Transgenic Tobacco Plants Expressing Double Stranded RNA of v-ATPase A Gene

BACKGROUND Expression of double strand RNA (dsRNA) designed against important insect genes in transgenic plants have been shown to give protection against pests through RNA interference (RNAi), thus opening the way for a new generation of insect-resistant crops. We have earlier compared the efficacy of dsRNAs/siRNAs, against a number of target genes, for interference in growth of whitefly (Bemi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010